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The stationary motion of a rectilinear semiinfinite crack in an infinite elastic body
was considered in [1, 2]. It will often be that not one, but several, cracks are propagated
in a medium. In this connection, it is interesting to consider the motion of a system of
semiinfinite parallel cracks. In this paper we limit ourselves to the consideration of the
case of longitudinal shear cracks. A similar problem, in mathematical respects, about the
steady motion of a rupture crack in a strip was studied in [3, 4].

Let us consider the motion of a system of semiinfinite parallel cracks, longitudinal
shear slits with constant velocity. In an xOy coordinate system moving together with the
cracks, the slit surfaces are a system of parallel half-lines =z, y=S§, where

S={z< 0, y=d2n-+1), n=0, +1, +2, ..~ }.

Let the rate of crack growth V be less than the transverse wave velocity c¢ in the medium.
It is also assumed that the crack motion is stationary, i.e.,, the strain and stress are in-
dependent of the time in the moving coordinate system. In this case, the elasticity theory
equations describing the problem have the form

p2otw/oz? 4 Pwloy? = 0, T = pow!ay, 1)

where B? = 1 — V?¥/c?; w is the displacement along the z axis, T = Oyz is the stress tensor
component, and u is the shear modulus. Let the very same homogeneous load

T(z, y).: T L, Y E S

be applied to the edges of all the cracks. Then the strains and stresses are periodic func~
tions of the coordinate y with period 2d, and the problem is reduced to the construction of
a solution of (1) in the domain —d < y < d that satisfies the boundary conditions

Uz, +d) = —T, < 0; (2)
w(z, +=d) = 0, z> 0. (3)

To solve the problem formulated, we use the method proposed in [5-7]. We temporarily
replace the inhomogeneous boundary condition (2) by a condition of the form

T/ %

0,5 7 — |

‘ , z/d
-0,5 0 0,5 0 T2 v

Fig. 1 Fig. 2

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp.
162-165, March~April, 1984, Original article submitted July 7, 1982,

0021-8944/84/2502~ 0327$08.50 © 1984 Plenum Publishing Corporation 327



oWz, +d) = —‘Toeax, z<< 0, (4)

where @ is a positive number which should be set equal to zero in the final formulas. We
represent the solution of (1) in the form
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where C(q) is an unknown function. Taking into account that
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we obtain dual integral equations for C(q)
j’ K (Bqd) c (Q) e—.iqxdq =0, z> 0,
. (6)
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from boundary conditions (3), (4). Here, K(z) = 7 th (2)/z. Representing the function K(z)
in the form K(2) = K+(2)K-(z), where K4(z) = I'(1/2 — iz/m)/T(1 — iz/n), K-(2) = Kt(—=2), T'(2)
is the Gamma function, and taking account of the analytic properties of the functions K+(z)
and K_(z), it can easily be shown [5-7] that the solution of (6) has the form

co L K ;. (iBad)
@ =7 g K, B
Substituting the value found for C(q) into (5), evaluating the integrals,and then letting the

parameter o tend to zero, we obtain the solution of the initial problem. Omitting the inter-
mediate computations, we present the final result:
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where wo = dtofu, z = 7(x/B + iy)/2d. It can be seen by direct substitution that the solu-
tion in the form (7) satisfies (1) and the boundary conditions (2) and (3). The distribution
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of the stresses t/to on the y = 0 axis is represented in Fig. 1. Curves 1 and 2 correspond
to the values V = 0 and 0.95c for the crack front velocity.

Let us investigate the behavior of the solution near the apex of an individual crack.
Let us introduce a r, 6 polar coordinate system with origin at the crack apex, and the
auxiliary variables p, ¢, connected to the angle 6 by the relation
pet® = cos (6) + if sin (0), —1 < 0 < 1,
where the values 6 = 7 correspond to the crack edges.

It follows from (7) that near the crack apex the following asymptotic relations are
valid [8]

w(r, 0) =_[:_ '[/Zzﬁésin (g), T(r, 0) = _VKZF(G),

where F(0) = cos (¢/2)//p, while the expression

i VB (-5 (8)

02
is obtained for the stress intensity factor. Graphs of the function F(8) are presented in
Fig. 2. Curves 1-3 correspond to the value V = 0, 0.8c, and 0.985c. For V < c/V/3 the stress
T as a function of 6 has a maximum directly on the continuation of the crack for 6 = 0. For
V > ¢/¥3, t has two symmetric maximums for 6 = +0,, where 6, is the solution of the equation
_Iiz_ Vi 48 cos?h, — 1 —2cos” 0,
¢ 2 sin® 0, cos® B, )

The dependence of 0, on the parameter V/c is presented in Fig. 3 (curve 1). As V/c changes
between 1/V/3 and 1 the value of 6, varies between zero and 90°.

Analogously, for the stress tensor components og, near the crack apex, we have the asymp-
totic expression- [9]

K

Uez=—l/—2—rT<9),
where
T(0)= 1_{Vp_cosesine—}-'l/p—i—cosecose}. 9
pV2 B

Dependence (9) is presented in Fig. 4. The values V = 0, 0.7c, 0.8c, 0.9¢c correspond to curves
1-4. As for the stresses oyz, for V < ¢/V3 the stresses 0gz have a maximum in the angular dis-
tribution at 6 = 0. For V > c¢/v3 the maximum is observed for the values 8 = 16, , where 0, is
determined as follows:

5 e 2 027” /
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005’0y =3 — o — 3 "/1+12Fcos ——3~) (10)
where

1 — 90¢%/ 72 4 54ct/V*
(14 1262/ v?)3/2

The dependence of 6, on the parameter V/c determined by the relationship (10) is presented
in Fig. 3 (curve 2). As the ratio V/c changes from 1/V3 to 1/V2, 6, varies between 52°24'
and 90°. 1In the domain 1/V2 < V/c < 1 the values of 6, lie in the domain 6, > 90°, and we
have 6, = 90° for V/c = 1.

Let us calculate the rate of energy liberation G for an individual crack. It is known
[9] that the rate of energy liberation for a longitudinal shear crack is related to the stress
intensity factor by the relationship

CoOsy = —

KZ

FI
G =5 —F————s
b YVi—vE
Substituting the value of the stress intensity factor from (8), we obtain G = t%0d/u, i.e.,
in this problem the rate of energy liberation is explicitly independent of the rate of crack
growth.
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