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The stationary motion of a rectilinear semiinfinite crack in an infinite elastic body 
was considered in [I, 2]. It will often be that not one, but several, cracks are propagated 
in a medium. In this connection, it is interesting to consider the motion of a system of 
semiinfinite parallel cracks. In this paper we limit ourselves to the consideration of the 
case of longitudinal shear cracks. A similar problem, in mathematical respects, about the 
steady motion of a rupture crack in a strip was studied in [3, 4]. 

Let us consider the motion of a system of semiinfinite parallel cracks, longitudinal 
shear slits with constant velocity. In an xOy coordinate system moving together with the 
cracks, the slit surfaces are a system of parallel half-lines x, y~ S, where 

S = {x<0, y = d(2n@i), n= 0, if, • }. 

Let the rate of crack growth V be less than the transverse wave velocity c in the medium. 
It is also assumed that the crack motion is stationary, i.e., the strain and stress are in- 
dependent of the time in the moving coordinate system. In this case, the elasticity theory 
equations describing the problem have the form 

~ w / # x ~  @ 02w/ay ~ = 0 , ~  = ~Ow/Oy, (1) 
where B 2 = 1 -- V2/c2; w is the displacement along the z axis, �9 = ayz is the stress tensor 
component, and ~ is the shear modulus. Let the very same homogeneous load 

�9 (x ,y )  = - - ~ ,  x , y  ~ S 

be applied to the edges of all the cracks. Then the strains and stresses are periodic func- 
tions of the coordinate y with period 2d, and the problem is reduced to the construction of 
a solution of (i) in the domain--d < y < d that satisfies the boundary conditions 

x(x, • --~, x < 0; 

w(x, • = 0, x > 0. 

To solve the problem formulated, we use the method proposed in [5-7]. 
replace the inhomogeneous boundary condition (2) by a condition of the form 

(2) 

(3) 
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x(x, ~ d ) =  --~e ~=, x < O, (4) 
where a is a positive number which should be set equal to zero in the final formulas. We 
represent the solution of (I) in the form 

w ( x , y ) =  -- 2g~t~t S qt ehSh([3aY)(~qd) C(q)e-lq=dq' 

t i ch (~qy) �9 ~ (x, y) = -- ~-- ch (~qd) C (q) e-~qXdq, 
- - o o  

where C(q) is an unknown function. Taking into account that 

ea x 1 e -  {q= 
= 2~i ~ q--~o5 'dq' x<O, 

- - o  9 

(s) 

we obtain dual integral equations for C(q) 

j K(~qd) C(q)e-iq=dq=O, x>  O, 
- - o o  e 

t "Co 
C (q) - -  T q ~ O ~  e-iqXdq = O' x < O, 

- - oo  

(6) 

from boundary conditions (3), (4). Here, K(z) = ~ th (z)/z. Representing the function K(z) 
in the form K(z) = K+(z)K-(z), where K+(z) = r(i/2 -- iz/v)/r(l - iz/~), K-(z) : K+(--z), r(z) 
is the Gamma function, and taking account of the analytic properties of the functions K+(z) 
and K_(z), it can easily be shown [5-7] that the solution of (6) has the form 

1 "~oK+ (i~czd) 
c (q) = 7" (q,-- icz) K+ (l~qd)" 

Substituting the value found for C(q) into (5), evaluating the integrals,and then letting the 
parameter G tend to zero, we obtain the solution of the initial problem. Omitting the inter- 
mediate computations, we present the final result: 

w(x, y) = 2 i m [ _ z q _ l n ( e Z  + ~i--~e~z)}, (7) 
W o 

~(X' Y) = Re {--t  ~ eZ 1 

where  wo = d~o /~ ,  z = ~ ( x / 6  + i y ) / 2 d .  I t  can be seen by d i r e c t  s u b s t i t u t i o n  t h a t  the  so lu - :  
tion in the form (7) satisfies (I) and the boundary conditions (2) and (3). The distribution 
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of the stresses m/mo on the y = 0 axis is represented in Fig. i. Curves 1 and 2 correspond 
to the values V = 0 and 0.95c for the crack front velocity. 

Let us investigate the behavior of the solution near the apex of an individual crack. 
Let us introduce a r, 0 polar coordinate system with origin at the crack apex, and the 
auxiliary variables p, % connected to the angle 0 by the relation 

pe t~ = cos (0) -i- i~ sin (0), --~ < 0 < z~, 

where the values 0 = +~ correspond to the crack edges. 

It follows from (7) that near the crack apex the following asymptotic relations are 
valid [8] 

w(r, 0 ) =  K V ~  r sin , ~(r, 0 ) :  K F(O), -Y 

w h e r e  F(0) = cos (~/2)/~/~, w h i l e  t h e  e x p r e s s i o n  

is obtained for the stress intensity factor. Graphs of the function F(0) are presented in 
Fig. 2. Curves 1-3 correspond to the value V = 0, 0.8c, and 0.985c. For V < c/v~the stress 
m as a function of 0 has a maximum directly on the continuation of the crack for 0 = 0. For 
V > c/r r has two symmetric maximums for 0 = • where 0, is the soluti~on of the equation 

V ~ _ ~ / i  ~8cos~0, -- t - - 2c os20 ,  
c 2 2sin20, cos20, 

The dependence of 0, on the parameter V/c is presented in Fig. 3 (curve i). As V/c changes 
between i/V~and 1 the value of 0, varies between zero and 90 ~ . 

Analogously, for the stress tensor components O0z near the crack apex, we have the asymp- 
totic expression [9] 

K %= = r (o), 

where 

f-V  ooo 0}. (9) r (0) --  p---~-~[ --  ~ sin 0 + ] / p  + cos 

Dependence (9) is presented in Fig. 4. The values V = 0, 0.7c, 0.8c, 0.9c correspond to curves 
1-4. As for the stresses Oyz, for V < c/~the stresses O0z have a maximum in the angular dis- 
tribution at 0 = 0. For V > c/~the maximum is observed for the values 8 = • where 8, is 
determined as follows: 

where 

5 2 V cos ~ O, -- T - -  ~ - -  Y I § 12 --~ cos , (i0) 

i--90c~/V~+54c4/V 4 
cos?= -- (i+i2c2/V2)al~ 

The dependence of O, on the parameter V/c determined by the relationship (i0) is presented 
in Fig. 3 (curve 2). As the ratio V/c changes from i/r I/V~, 0, varies between 52024 ' 
and 90 ~ . In the domain i/~-< V/c < 1 the values of 0, lie in the domain 8, > 90 ~ , and we 
have 0, = 90 ~ for V/c = i. 

Let us calculate the rate of energy liberation G for an individual crack. It is known 
[9] that the rate of energy liberation for a longitudinal shear crack is related to the stress 
intensity factor by the relationship 

S u b s t i t u t i n g  t h e  v a l u e  o f  t h e  s t r e s s  i n t e n s i t y  f a c t o r  f r o m  ( 8 ) ,  we o b t a i n  G = ~ 2 o d / ~ ,  i . e . ,  
i n  t h i s  p r o b l e m  t h e  r a t e  o f  e n e r g y  l i b e r a t i o n  i s  e x p l i c i t l y  i n d e p e n d e n t  o f  t h e  r a t e  o f  c r a c k  
g r o w t h .  
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